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The energy exchange between atoms and solids is ~ery impor tant  

to the theory of adsorption or catalysis ,  as wel l  as to the theory of 

processes in which a major  part is played by interact ion of a crystal  

surface witi~ iJdt ia l  compou.qds or in t e rmed ia te s .  ?he problem has 
been considered [1, 23 in the one-phonon approx imat ion .  Exper iment  

[3 ,4]  ind ica tes  tllat condensat ion of a toms occurs with a probabi l i ty  of 

the order uf unity when the t rans la t ional  energy equals  the energy 

needed  to exc i t e  several  phonons in the solid,  i Ience  the rate of energy 
exchange  is much  greater  than that  predic ted in [ 1 , 2 ] .  The quantum-  

m e c h a n i c a l  argument  is very compl i ca t ed ,  so I use s imple  models  and 

describe tim mot ion  of the a toms within the framework of c lass ica l  
mechan ic s .  

There are several  papers [5 -u ]  on this topic .  The solid is usually 
represented as a semi in f in i t e  l inear  cha in  of e l a s t i c a l l y  bound atoms,  

tire end a tom ac t ing  as the surface a tom that  in terac ts  with the inc ident  
a tom.  A closed solution has been found [6, 7] for the equat ions of 

mot ion  of this system on the assumption that a l l  the force constants 

for the a t o m i c  in te rac t ions  are equa l  for two par t icular  cases:  a) a l l  

the a toms have  the same mass,  b) the mass of the inc ident  a tom is half  
tha t  of an a tom in the chain.  The equations have  been solved numer i -  
c a l l y  iF, 9] for several  d i f ferent  masses of the inc iden t  a tom and for 

various force constants for the in terac t ion  of this with the surface.  I tere 
I g ive  a solution in a closed for,l~ for arbi trary values of the force con- 
stant at  the surface and of the mass of the inc ident  a tom.  
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1, Genera l .  ALl the i n t e r a t o m i c  dis tances  are assumed equa l .  [n- 

t e r a tomic  forces are rap id ly  decreas ing  functions of d is tance,  so we 

consider only the in te rac t ion  of an a tom with i ts  two nearest  neighbors,  

and that  in the ha rmonic  approx imat ion .  Let K be the force constant  

of the chain ,  whose a toms are of mass M. This chain  in terac ts  with 

an a tom A (Fig. 1), whose mass is M 0. Figure 2 shows the po ten t i a l  

for the in te rae t ion  of A with the end a tom B, which is represented 

as the t runcated po ten t i a l  for a ha rmonic  osc i l la tor  of force constant  

K 0 . "['he cutoff d is tance  has a value  x(0), whi le  the binding energy 

Q obeys Q = K0xa(0)/2. The number ing  of the a toms wi l l  be c l ea r  
from Fig.  1. The system of equat ions  of mot ion  is 

Morj" (t) = - -  Ko (to - -  q ) ,  

Mrx'" (t)  = K o (r  o - -  rx) - -  K (r x - -  r=)~ 

Mrn'" (t) = t(  (rr,_ 1 - -  2rn @ rn+]) (n ~ 2), (1) 

in which r n ks the dev ia t ion  of a tom n from its equ i l ib r ium posi t ion.  

In this ease we consider a l a t t i c e  at 0 ~ K, i . e . ,  a l l  the l a t t i c e  

a toms are i n i t i a l l y  at rest. The in i t i a I  condi t ions  are then wri t ten  as 

~o (0) = a, ro' (0) = v ,  

~,, (0) = 0, r #  (0) = 0 (n >~ t ) ,  (2) 

in which v is the ve loc i ty  of a tom k .  

\re int roduce the new var iab les  x and T, together  with the quan t i -  
t ies  t3 and p, 

/ K \% K0 M 
X ( T ) = ~ 0 ( T ) - - q ( T ) ,  T - - - - 2 \ ~ - )  t = % t ,  a__  K , g =  Mo" 

appl ied to get  for x(r) the in tegrodif ferent ia l  equat ion  

1 1 ( l . , ( s )  

o 

(3) 

in which x(0) = a, ;~(0) = V/Wl. and IF(s) is a Bessel function.  

Fig. 2 

2. Solution of the equat ion  of mo t ion .  The solution ks found via a 

Laplace t ransformation.  Let X(p) be the transform of the desired func-  
t ion;  then we have  

X ( p ) =  4x(O) p ~- 4~'(0) 
4 p  + ~ ( l  + ~) - -  ~ ( V'p ~ 4- ~ - -  p)~' (4) 

[ 'he solution to (3) is expressed via the contour in tegra l  

a + i ~  

' t a:(~) = ~ 7  X ( p ) e P " d p .  (5) 
a--ioo 

Here a is a constant  greater  than the rea l  part of any s ingular i ty  

in X(p). In tegra t ion  a long the straight  l ine  Re p = a may  be replaced 

by in tegra t ion  along any closed path  in a f in i te  part of the p lane  that  
encloses a l l  s ingular i t ies  of X(p). 
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Fig. 3 

The in teg ra l  of (5) may be expressed in terms of Lommel  and 

Bessel functions together  with t r igonomet r ic  funct ions.  Fhe Lommel  

funct ions Uv(y, z) of two independent  variables* are def ined by 

o J  

m = o  

where lz,+2 re(z) are Bessel funct ions.  

Schrodinger 's  method  [10] ,  as deve loped  by others [7 ,8 ,  11],  is *See [ lgJ  for tables  of these funct ions.  
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The funct ion : /p? - 1 has  s ingular i t ies  a t  p = i and p = - i .  We 

join these points  by a l ine .  The func t ion  w = ~c 7 -r i - p i m a g e s  the 

p lane  with the sec t ion  of  p within uni t  c i r c l e  w = 1 in the  p lane  of the 

c o m p l e x  v a r i a b l e  w. To the c i rc les  r = const  in the w p lane  co r r e -  

spond ell ipses in the p p lane ,  whose foci l ie  a t  the  c r i t i c a l  points.  

, , \ \  
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Coun te rc lockwise  (posi t ive)  t r ave r sa l  of an el l ipse corresponds to d o c k -  

wise (nega t ive )  t raversa l  of a c i r c l e .  We now r e p l a c e  the var iab les  

~.via the fo rmu la  [13] w = ./-~2- + 1 - p to get  

.,.,=+i.+,+,~ [+ (,+- +)i,++, 
z (0) (1 - -  u,4) + 2+' (0) w (t  + so2) 

X (u,) ----- lo [(t - -  !B) ~ --}- (I~ -F BP- - -  2) w~ -I- 11 ' 
(7) 

As our contour  l we m a y  t ake  a c i r c l e  of unit  radius ,  Iwl = 1. 

Here  and subsequent ly  we assume tha t  the or ig in  is t raversed  in the  

pos i t ive  d i r ec t i on .  We put  the  r a t i ona l  fiJnction X(w) in  the  fo rm of 

a sum of f r ac t ions  

x(~)= T + j~_ ~---~, 
' n : O  t l = l  

2 - - ~ - - ~  
wz,~--  2 (t - -  [3) ' T ____ l / i~p~  T l~ __ 413p. + 2[~1~ . (8) 

The  in t eg ra l  of (7) splits up in to  a sum of in t eg ra l s  of the fo rm 

I I "r ~+ g ~ - ~  
I w l = l  

i w n  F T 

~--~ g (5 -+)1+ ,  ~P LT 
Iwl=I 

(9) 

(io) 

The subst i tu t ion w = u -z shows tha t  the i n t e g r a l  of (9) is a Bessel 

f u n c t i o n  I0(r )  of order  ze ro .  We assume tha t  the poin t  w s l ies  outs ide  

the  con tour  [w] = 1, which  is so for ~ < 4 / (g - t -  2) .  Then  

so'2 - -  los 

lo2 2 ~ [ ,+~+(~)+] .  
lO s 

(11) 

We subst i tu te  (11) in to  (10) and  m a k e  the c h a n g e  of v a r i a b l e  w = 

---- LI - I  t0 get 

F=~-~ ~ (--1) '~  x 
m = 0  I u = l  

x ( t m+l z _~.) ,-+-,oxpb(~_-)],o. (1~) 

It is pe rmiss ib le  to reverse  the  order  of  s u m m a t i o n  and i n t eg ra t i on  

because  the series in the  i n t e g r a l  conve rges  un i fo rmly  and abso lu t e ly .  

We use the represen ta t ion  of the Bessel funct ions  in the form of a 

contour  in tegra l  

,+(,,) = ~ , - - - ' e - p F +  (, ' --+-)I," _ r o d  k "~ ' 
f. 

(13) 

in which 10 is a c i r c l e  of a rb i t r a ry  radius  with its cen te r  a t  the  or ig in .  

Compar i son  of (6), (12), and (13) gives 

t , '! ,(l-n) rl t ~'/, I]. (14)  

~ = ( - ~ )  ~-+,kl-q) ". 

Consider  the case  where w s l ies wi thin  the contour  Iwl = 1, which  

occurs  for ~ > 4 / ( ,  + 2).  The in t eg rand  in (10) has an essent ia l ly  

spec ia l  point  w = O and two f i r s t -o rder  poles w = • s. The in t eg ra l  

equals  the  product  of 2hi by the  sum of the amoun t s  to be sub t rac ted  

f rom the in t eg rand  for the  poles wi th in  the  unit  c i r c l e ,  plus the  in tegra l  

over  a c i r c l e  of radius  r < lWsl. For n = 1 we have  

i w ' " T  -~,., lo-~_~.~ 
I w I = l  

t 
= e o e c o ~ §  w [ ~  [ I --w)]dw oxp LT i~  

/r 

I (16) 

Here I r is a c i r c l e  of radius  r < [Wsl. The  in t eg ra l  over  It, by 

a n a l o g y  with the above ,  is expressed via a L o m m e l  func t i on .  For 

n = 0 we get  

i t - ~  t 

Iwl=l 
t_+_,~,/, +--+-~-+. +-p [-+-(~-,,')l ,',,' (16) - - ( -  so., +,n~ ' 

I r 

Simple  a l g e b r a i c  opera t ions  g ive  us the  solut ion to (3) once  the  

in tegra l s  h a v e  been  c a l c u l a t e d .  Before g iv ing  the f ina l  resul t ,  we 

m a y  s impl i fy  the  no t a t i on  by wr i t ing  

C - -  - -  
T~ 

!~v' 8 = ( -  t ~'/, 

z =  2 ( 8 k  t) D = 2 T - -  ~ T - - ~  + B' + B'I ~ 
, ' ' 2"r (13-- t) 

/ 

7/ 

/ u . . ~ -  
p,,~l 

F 
1 

Fig. 5 
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Then the solution may be wri t ten as follows: 

for J~< 4 / ( # + 2 ) ,  B~ 1, /3~ 4#/(#+ 1) z 

z ('r) = z (0) [1o (T) ~ ~oCU 2 (aT, ~:) -[- DUe (6v, ~)1 + 

+ x" (0) [CU~ (aT, z) - -  EU~ (6T, ~)]~ (17) 

for ~ > 4 / ( p  + 2) and tB ;~ 1 

z (~) = z (0) [(1 - -  ~C) Io (~) + coC cos co~ + 

"t- ~CU2 (a-l~, "0 + DU~ (6~, ~)l + 

~ x'(O) [Cs ino)T- -CUI(a-av ,  T ) - -EUI(6v , '~ ) ]~  (18) 

for ~= 4 / ( #  + 2) 

x (~) = x (0) [Io ('r) + D U  2 (6T, I)] --  x" (O)EU 1 (6~, ~); (19) 

for ~= l a n d  # > 2  

(~) = x (o) ~ Zo (~) -- ~ h ( ~ )  + 

~(t~(~_t) ~ -  2) U ( "~ , ,~) + ~ \ ~ - - -~_~  + 

+ ~ cos \2 1/ '~ '-~1 r + 2x" (0) I~ (~) - -  

V - - 2  "~ 

+ ( ~ - O V Y - ~  2 t , ~ - ~  

for B= 1 p ~ 2  and p e  1 

1 t 
(~) = ~ CO) [ ~  ~o (~) -V2-~ t ,  (~) - 

_ ~ (~ - -  2) ~)] + 

+2,:'(o) I~(~)+ (~_O V . I F ~ i u ~ ( V ~ . ~ )  . (21) 

The solution of ( 2 2 ) h a s  been obta ined  previously  [6, 7 ] .  

For ~ = l a n d  # =  1, 

x ( v )  = x (0)  [ / o ( ' 0 - - I ~ ( ~ ) ] +  2x ' (0)  [Ir('~) + I ~ ( v ) ] ;  (22) 

for ~= 4 # / ( # +  1) ~, 

(~) = ,  (o)12uoL[~) ~, ,j- Zo ( , ) -  

Do (,, + O(i_~)~ t .~./ 

~ 0  

+2,.(o){h(~)+~Un~_~ / U, Li~-4- W , .~J+ 
oo  

+ 2 X ~ ('~ + i ) ( l - t O  i (~)}. (2S) 

8, Discussion. It is r ead i ly  shown that  a l I  te rms tend to 0 as ~- --~ 

"-'- ~ in these formulas ,  apart  from the sine and cosine terms,  which 
correspond to e x c i t a t i o n  of l o c a l  v ibra t ion ,  whose f requency l i es  above 

the range of a l lowed  f requencies ,  and the  a m p l i t u d e  decreases  ex-  

ponen t i a l l y  away  from the surface.  In the ha rmon ic  approx imat ion ,  the  
energy  corresponding to this  v ibra t ion  is not  d iss ipated in the l a t t i c e  

but persists on the a t o m .  The other terms correspond to e x c i t a t i o n  of 

crys ta l  modes,  and it  can  be shown that  the energy corresponding to 

~he c rys ta l l ine  vibrat ions  is t ransferred to the cha in  in  a t i m e  of the 

order of 10 -~  sec.  The a n h a r m o n i c i t y  g ives  the  l o c a l  v ibra t ion  a 

f in i t e  l i f e t i m e  of 10 -s to 10 -~ sec.  

0.5 . 4  
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aN lg 
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This solution al lows us to discuss the m e c h a n i c a l  re laxa t ion  of a 

solid when an a tom is adsorbed on i t .  The mean  bond energy in 

chemisorpt ion is much  grea ter  than the mean  k ine t i c  energy of the 

atoms in the gas, so for s imp l i c i ty  we may  assume that  the ve loc i ty  
of the inc ident  a tom is 0. The a tom begins to vibrate  and gives its 

energy to the cha in  when its d is tance  from the surface becomes  equaI  

to x(0). 

Figure 3 shows the t i m e  var ia t ion  of the dis tance between the end 

a tom of the cha in  and the gas a tom,  as expressed in r e l a t ive  units,  for 

several  values of the mass ra t io  g, with 5 = 1. Curve 1 corresponds to 

= 3; curve 2, to # = 1; and curve 3, to # = 0.2. Local osc i l l a t ion  

occurs for # = 8, and the dashed l ine  in Fig.  8 shows the contr ibut ion 

of the crystal  osc i l la t ions  to x ( r ) /x (0 ) .  The energy corresponding to 

the crystal  modes  is transferred more slowly to the l a t t i c e  as the mass 
of the inc ident  a tom decreases .  For ~ << 1 the mot ion  is aper iodic .  

Figure 4 shows xO-)/x(0) for various B f o r ,  = 1. Curve 1 is for ~ = 

= 2.2, curve 2 is for B= 1, and curve 8 is for B= 0.1. Local osc i l -  

l a t ion  occurs for 3 = 2.2;  the broken l ine  in Fig.  4 shows the cont r i -  

bution from band osc i l la t ions  to x ( r ) /x (0 ) .  The ra te  of r e l axa t ion  of 
the v ib ra t iona l  energy is d i rec t ly  re la ted  to the in te rac t ion  constant .  

A la rge  constant  imp l i e s  tha t  the dissipat ion of the energy of the band 

modes  occurs at roughly the ra te  app l i cab le  i f  a l l  the  force constants 

are equa l .  

Figure 5 shows the f requency of the l o c a l  osc i l l a t ion  in  units of 
w /w  L as a function of B for various #. This f requency subs tant ia l ly  

exceeds  the Debye f requency a~ L when a l ight  a tom is adsorbed. 

Figure 6 shows the r e l a t i v e  amp l i t ude  Cr = aJC of the l oca l  osc i l -  

l a t ion  as a function of p = M/M 0 ;for each g iven  ~ there  is some 

c r i t i c a l  mass ra t io  above which we get  l oca l  osc i l l a t ion ,  the amp l i t ude  

varying rapid ly  from 0 to 1 as /1 increases .  For C 1 ~ 1 the mot ion  m a y  

be described via  a s ingle  osc i l l a to r ;  this s i tuat ion occurs for v i r tua l ly  

any B for # >> t .  

It is thus c l ea r  that  v ib ra t iona l ly  exc i t ed  par t ic les  can  occur in 

a b o v e - e q u i l i b r i u m  concent ra t ions  in adsorption and when exo the rmie  

e l e m e n t a r y  acts  of r eac t ion  occur  at  the surface of a ca ta lys t .  The 

energy of these r e l a t i ve ly  long- l ived  hot  par t ic les  is subsequently used 

to a c t i v a t e  fresh mo lecu l e s .  Ac t ive  centers  in a ca ta lys t  can  occur  at  

any  type  of defect  in the per iod ic  structure that  can  g ive  rise to l oca l  

osc i l l a t ions .  The ac t i va t i on  energy comes  to the adsorbed m o l e c u l e  

from the solid phase and from the ac t ive  center ,  which acts  as an 

energy  t rap.  The f requency of l o c a l  v ibra t ion  at  an ac t i ve  center  

should co inc ide  with the v ib ra t iona l  f requency  of the m o l e c u l e  that  

l eads  to the desired r eac t ion ,  because  the probabi l i ty  of exchange  is 

m a x i m a l  for resonance .  

To conc lude  we note  tha t  the above a rgument  app l ied  for t imes  

r < f~, in wMeh "~' is the cha rac t e r i s t i c  t i m e  for energy  exchange  
be tween  normal  modes .  The solut ion does not require  resort to c o m -  

puters to ge t  the accomoda f ion  coef f ic ien t  for any mass ra t io  and any 

binding energy;  i t  also gives  the a sympto t i c  va lue  of the ve loc i ty  of 
the a tom on re f l ec t ion  and so on.  

I a m  indeb ted  to N. D. Sokolov for discussions. 
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